Introduction aux bases de données et SQL

CM2 : Algèbre relationnelle

Mickaël Martin Nevot

V1.1.1

Cette œuvre de Mickaël Martin Nevot est mise à disposition sous licence Creative Commons Attribution - Utilisation non commerciale - Partage dans les mêmes conditions.

Introduction aux bases de données et SQL

- Prés.
- II. BD et SGBD
- III. Algèbre relationnelle
- IV. DF et normalisation
- Merise
- VI. LMD

Théorie du modèle relationnel

- Deux catégories de langages de manipulation des relations :
 - Langage algébrique : propose des opérateurs combinant les relations entre elles
 - Langage logique : permet de spécifier des relations à partir de formules logiques

L'algèbre relationnelle est une algèbre fermée (le résultat de tout opérateur est du même type que les opérandes)

Base de données exemple

ETUDIANT	IdE	Nom	Prenom	Sexe	DateN	Adresse	Annee
	8	'Dupond'	`Lulu'	'M'	`1981-03-16'	'Aix en Pce'	3
	12	'Duvent'	'Yves'	'M'	1981-04-20'	'Marseille'	2
	14	'Dupond'	'Maurice'	'M'	1982-04-17'	'Marseille'	3
	15	'Durand'	'Helene'	`F'	1982-04-18'	'Gardanne'	1
	17	'Tapioca'	`Lulu'	'M'	`1980-05-11'	NULL	3
	45	'Deschamps'	'Jean'	'M'	1982-04-20'	'Aix_en_Pce'	2

SOCIETE	IdS	Nom	RaisonS	Activite	Adresse
	8	'Microware'	'SARL'	8	'Aix en Pce'
	13	'EdF'	'SEM'	15	'Marseille'
	21	'TOTAL'	'SA'	9	'Fos sur Mer'
	34	'Almacom'	'SARL'	7	'Aubagne'

PERSONNEL	IdP	Nom	Prenom	IdS	Salaire
	2	'Durand'	'Jules'	8	3100
	4	'Dupond'	'Emile'	8	2420
	7	'Toulemonde'	'Rene'	8	1960
	12	'Mirabeau'	'Regine'	13	1810.5
	19	'Petitjean'	'Helene'	21	1750
	53	'Duvent'	'Yves'	34	3200
	61	'Martin'	'Louis'	21	2670

CONVENTION	IdE	IdS	IdP	DateC Du	ree	Intitule	Note
	8	8	2	'2003-6-10'	3	'conception d''un logiciel'	16
	17	8	7	'2003-5-8'	4	' realisation d''un serveur WEB'	14
	15	13	12	'2003-4-12'	5	' logiciel de controle / commande'	11
	8	34	53	'2004-3-2'	6	'logiciel de transfert de fichiers'	1 14
	17	34	53	'2004-3-2'	6	'prototype de modem externe'	18
	12	13	12	'2003-6-2'	6	' carte d''acquisition'	13
	14	21	19	'2003-5-21'	5	'logiciel de traitement d''images'	17
	15	8	4	'2004-6-6'	6	' driver de carte video'	10
	15	8	4				

STAGIAIRE	IdSt	Nom	Prenom	Sexe	DateN	Adresse	Annee
	8	'Dupond'	`Lulu'	`M'	`1981-03-16'	'Aix en Pce'	3
	14	'Dupond'	'Maurice'	'M'	1982-04-17'	'Marseille'	3
	17	'Tapioca'	'Lulu'	'M'	`1980-05-11'	NULL	3
	62	'Balmon'	'Nadia'	`F'	`1983-11-21'	'Gardanne'	4

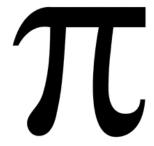
Opérateurs

- Projection
- Sélection
- Union
- Différence
- Intersection -
- Produit cartésien
- Jointure
- Division

Opérateurs primitifs

Opérateurs dérivés

Opérateurs


ensemblistes

Projection

- Préserve (projette) certains attributs d'une relation :
 - $R1 = \pi_{Nom} (ETUDIANT) \leftarrow$ Version « mathématique »
 - R1 = Projection (ETUDIANT / Nom)

ResProj	Nom
	Dupond
	Duvent
	Dupond
	Durand
	Tapioca
	Deschamps

Version « littérale »

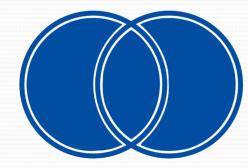
Sélection

- Filtre certains **tuples** d'une relation (avec condition[s])
 - R1 = $\sigma_{Annee < 3}$ (ETUDIANT)
 - R1 = Sélection (ETUDIANT / Annee < 3)

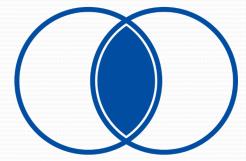
ResSel	IdE	Nom	Prenom	Sexe	DateN	Adresse	Annee
	12	Duvent	Yves	M	20.04.1981	Marseille	2
	15	Durand	Helene	F	18.04.1982	Gardanne	1
	45	Deschamps	Jean	M	20.04.1982	Aix_en_Pce	2

• Condition : Une condition est un prédicat

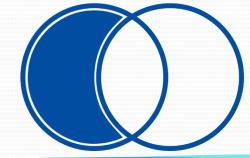
- Attribut(s)
- Constantes: 2, 'F', etc.
- Opérateur(s) :
 - De comparaison : =, <>, >, >=, <, <=, etc.
 - Etc.


Les opérateurs de comparaison peuvent être utilisés avec des attributs textuels

Expression logique vraie ou fausse



Opérateurs ensemblistes


Union

Intersection

Difference

Union

- Fusionne des **tuples** de deux relations :
 - $R1 = ETUDIANT \cup STAGIAIRE$
 - R1 = Union (ETUDIANT, STAGIAIRE)

ResUni	IdE	Nom	Prenom	Sexe	DateN	Adresse	Annee
	8	Dupond	Lulu	M	16.03.1981	Aix_en_Pce	3
	12	Duvent	Yves	M	20.04.1981	Marseille	2
	14	Dupond	Maurice	M	17.04.1982	Marseille	3
	15	Durand	Helene	F	18.04.1982	Gardanne	1
	17	Tapioca	Lulu	M	11.05.1980		3
	45	Deschamps	Jean	M	20.04.1982	Aix_en_Pce	2
	62	Balmon	Nadia	F	21.11.1983	Gardanne	4

Les domaines des attributs correspondants dans les deux relations doivent être les mêmes (on parle de relations unicompatibles)

Différence

- Retourne les **tuples** de la première relation ne figurant pas dans la seconde :
 - R1 = ETUDIANT STAGIAIRE
 - R1 = Différence (ETUDIANT, STAGIAIRE)

ResDif	IdE	Nom	Prenom	Sexe	DateN	Adresse	Annee
	12	Duvent	Yves	M	20.04.1981	Marseille	2
	15	Durand	Helene	F	18.04.1982	Gardanne	1
	45	Deschamps	Jean	M	20.04.1982	Aix_en_Pce	2

Les domaines des attributs correspondants dans les deux relations doivent être les mêmes (on parle de relations unicompatibles)

Intersection

- Retourne les **tuples** communs aux deux relations :
 - $R1 = ETUDIANT \cap STAGIAIRE$
 - R1 = Intersection (ETUDIANT, STAGIAIRE)

ResInt	IdE	Nom	Prenom	Sexe	DateN	Adresse	Annee
	8	Dupond	Lulu	M	16.03.1981	Aix en Pce	3
	14	Dupond	Maurice	M	17.04.1982	Marseille	3
	17	Tapioca	Lulu	M	11.05.1980		3

Les domaines des attributs correspondants dans les deux relations doivent être les mêmes (on parle de relations unicompatibles)

Produit cartésien

- Associe chaque **tuple** d'une relation avec une autre
 - R1 = $STAGIAIRE \times SOCIETE$
 - R1 = Produit (STAGIAIRE, SOCIETE)

ResPrC	IdSt	Nom	•••	Annee	IdS	Nom		Adresse
	8	Dupond	•••••	3	8	Microware	•••	Aix_en_Pce
	14	Dupond		3	8	Microware		Aix_en_Pce
	17	Tapioca	•••	3	8	Microware	•••	Aix_en_Pce
	62	Balmon		4	8	Microware	•••	Aix_en_Pce
	8	Dupond		3	13	EdF	••••	Marseille
		••••••	••••	•••••	•••	• • •	••••	•••
	17	Tapioca		3	34	Almacom	•••	Aubagne
	62	Balmon		4	34	Almacom		Aubagne

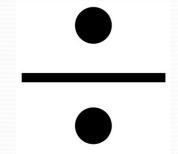
Très peu utile (seul)

Jointure ← Ou θ-jointure

- Union des attributs de deux relations avec les tuples coïncidant en fonction d'un comparateur :
 - R1 = $SOCIETE \theta PERSONNEL (SOCIETE.IdS =$ PERSONNEL.IdS)
 - R1 = Jointure (SOCIETE, PERSONNEL / IdS = IdS)

ResJoi	IdS	Nom	•••	Adresse	IdP	Nom	•••	Salaire
	8	Microware		Aix en Pce	2	Durand		3100
	8	Microware		Aix_en_Pce	4	Dupond		2420
	8	Microware		Aix_en_Pce	7	Toulemonde		1960
	13	EdF		Marseille	12	Mirabeau		1810.5
	21	Total		Fos sur Mer	19	Petitjean		1750
	34	Almacom		Aubagne	53	Duvent		3200
	21	Total		Fos sur Mer	61	Martin		2670

Division


• Retourne les **tuples** d'une relation qui correspondent à la combinaison de tous les **tuples** d'une autre relation, projetés sans les **attributs** de la seconde :

• R3 =
$$\frac{R2(IdS,IdE)}{R1(IdE)}$$

• R3 = Division (R2, R1 / IdE, IdE)

E
3
7

R2	IdS	IdE
	8	8
	8	17
	13	15
	34	8
	34	17
	13	12
	21	14
	8	15
	34	15
	2	17

ResDiv	IdS
	8
	34

Combinaison d'opérateurs

- Exemple :
 - $R1 = \sigma_{Annee < 3} (ETUDIANT)$
 - $R2 = \pi_{Nom} (R1)$

Ou

- R1 = Sélection (ETUDIANT / Annee < 3)
- R2 = Projection (R1 / Nom)

L'extraction des données peut se faire en plusieurs étapes

Cas pratique

Aller plus loin

- Calcul relationnel (à variable domaines)
- Correspondance calcul / algèbre

L'algèbre relationnelle présuppose la connaissance du schéma de la base de données pour naviguer entre les relations : c'est un langage procédural, l'ordre d'application des opérateurs doit être fourni

Afin de permettre l'écriture de requêtes de manière déclarative, le calcul relationnel a été introduit (hors cours)

Crédits

